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The problem of the carrying capacity of a system of film membranes (lamellae) in a porous medium, which block the free motion 

of a gas delivered from outside, is considered in a probability formulation. It is assumed that, in the initial state, the lamellae 

are only located in the pore throats. The system can be called a coarsely cellular foam since exactly one of its bubbles is actually 

enclosed in each pore. The lamellae are assumed to be immobile and are broken down if the pressure drop across them exceeds 

a certain critical value. The characteristics of the breakthrough cluster, which arises when a specified quantity of an ideal gas is 

injected into the medium, are investigated. The problem is formulated in terms of probability mechanics for the breakdown of 

discrete systems and is studied within the framework of lattice models. The pores (which, for simplicity, are of the same volume) 

are identified with lattice nodes and the lamellae are identified with links which are blocked in the initial state and which possess 

a random strength with a known probability distribution. The breakthrough process involves the successive rupture of overloaded 

lamellae and a corresponding enlargement of the domain of the pore space occupied by the injected gas. Analytic expressions 

for the probability of breakthrough to a specified depth are obtained for several forms of linear chains of lattice nodes and in 

the case when the structure of the system is a regular binary tree (a Cayley tree). Examples of calculations are presented. Since 

the probability of the lamellae breaking down decreases as the breakthrough zone increases, the model considered is substantially 

different from traditional percolation models and, in particular, the breakthrough cluster is always bounded here. 0 2002 Elsevier 

Science Ltd. All rights reserved. 

Interest in the problem of the behaviour of foams in a porous medium is due to their ability to block 
the motion of gas streams in the system of capillaries effectively. The corresponding blocking mechanisms 
are extremely diverse and include the effects of the size reduction of the structure of the foam, the 
breakdown and regeneration of lamellae, the displacement of the foam in the form of a caravan of 
lamellae along certain active pore channels, etc. (for example, see [l-3] and the bibliography in them). 
The key parameter of the problem is the critical pressure gradient at which steady gas flow occurs [l, 
21 or the critical pressure drop corresponding to the instant when dynamic displacement of the lamellae 
of the caravan occurs, when an active channel informed [3-51. In the second case, one speaks of the 
problem of the breakthrough of the foam. 

In the first of the above-mentioned formulations, the problem is usually treated within the framework 
of percolation approaches (probabilistic by its nature) [l, 2,6] when the geometrical characteristics of 
the clusters formed by the active channels are used under the assumption that there are no collective 
effects. In this case, the probability of a given link being open is assumed to be one and the same (the 
probabilities of their breakdown are assumed to be identical and constant for the whole ensemble of 
lamellae). The use of numerical simulation enables one to complicate models of this type by, for example, 
taking into account the effects of the repeated breakdown and regeneration of the lamellae [2]. The 
problem of breakthrough has been considered in [3-51 in a non-percolation, deterministic formulation, 
where a model was proposed for the displacement of the caravan of intact lamellae along a linear channel, 
which takes account of the property of the compressibility of the gas and the bubbles of foam and, 
thereby, the interaction of neighbouring lamellae. It has been shown that collective effects can have a 
substantial effect on the value of the critical pressure drop. 

Below, the problem of the breakthrough of a foam is considered, but from a somewhat different aspect. 
In fact, a probability model is investigated which describes the formation of a breakthrough zone (or 
a breakthrough cluster according to the terminology adopted in percolation theory) when a specified 
quantity of an ideal gas is injected into the medium. The problem involves determining the parameters 
of the breakthrough zone, that is, it is not assumed that there is a gas flow. The successive breakdown 
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Fig. 1 

of the blocking lamellae is accepted as the mechanism causing the growth of the breakthrough cluster: 
the possibility of their displacement or movement along the system of capillaries is not considered in 
the model. The reduction in the pressure in the breakthrough zone, as it becomes larger leads to a 
reduction in the likelihood of the breakdown of lamellae at the later stages of the breakthrough process 
compared with the initial stage, which distinguishes the model under consideration from traditional 
percolation formulations. 

1. FORMULATION OF THE PROBLEM 

We will formulate the problem of estimating the “carrying capacity” of an ensemble of lamellae which 
overlap capillaries within the framework of the following lattice model which, as will be shown below, 
can be investigated using the methods of probability mechanics for the breakdown of discrete systems, 
The lattice nodes are identified with pores, the volumes of which (~0) are identical, and the links, which 
are blocked in the initial state, are identified with lamellae located in the pore throats. It is assumed 
that the medium is filled with a coarsely cellular foam (Fig. 1) when there is just a single lamella in 
each pore throat (pi in Fig. 1) and each pore actually contains just a single bubble of the foam, and the 
pressures in these pores are identical and equal toPo. 

The lamellae are assumed to be immobile and are ruptured, opening the link, if the pressure drop 
on them exceeds a certain critical value, which can be called the strengths of the lamella. The strengths 
of lamellae are assumed to be independent random quantities with the same probability distribution 
F,(X), specified on the support [S,in, smaw]. An opened link cannot be blocked again, that is, regeneration 
of lamellae is not permitted. 

A gas (which is the same as that in the pores) is injected at a specified lattice node which is henceforth 
called the reference lattice node. Suppose the total massM of the injected gas is specified. The lamellae 
closest to the reference lattice node are acted upon by an excess pressure and some of them (the relatively 
weaker ones) are ruptured (the lamellae Li in Fig. 1) while other remain intact. The volume of the 
breakthrough zone increases and pressure equalization at a new lower level occurs. Again, some of the 
loaded lamellae are ruptured (the lamellae Li), a corresponding redistribution of the pressure takes 
place and so on. The breakthrough process is completed when all the lamellae in the breakthrough 
zone front are able to absorb the corresponding pressure drop (the lamellae Lz, Lj). 

All time effects are excluded from the treatment and the breakthrough process is analysed using a 
step-by-step scheme. In the course of a single step, the synchronous breakdown of all the overloaded 
lamellae occurs and there is an equalization of the pressure within the limits of the new configuration 
of the breakthrough zone. The case of non-interacting lamellae is considered when the pressure 
perturbation is not transmitted beyond the limits of the breakthrough zone. 

Using the model of an ideal gas, we find the following relation for the magnitude of the pressure in 
the breakthrough zone at step z. 

PT = WV, + 1)Po 

where W is the volume which the injected gas would occupy under the same conditions as the gas in 
the pores exists (the values of Wand M are uniquely related) and V, is the volume of the breakthrough 
zone at the end of step z. The pressure jump on the loaded lamellae is then equal to 

4% = w~vsP0 (1-l) 
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Here, the probability of breakdown of a lamella (that is, the probability of the unblocking of a link) is 
equal to F,(Ap,). 

The following important property of the model follows from what has been said: if a lamella is not 
ruptured in a certain step, then it will never be ruptured later (the lamella L2 in Fig. 1) since the pressure 
in the breakthrough zone can only decrease. 

Within this formulation of the problem, the final shape of the breakthrough zone is random. The 
model for the breakthrough of a foam by a gas, which has been described, is largely analogous to the 
models which are investigated in percolation theory [6-8]. However, it differs considerably from these 
latter models in the fact that the probability of the unblocking of links in it decreases as the breakthrough 
zone (or the cluster, as one says in percolation theory) becomes larger while, in percolation models, 
this probability is fixed. One might therefore expect a considerable difference in the properties of the 
above-mentioned models. For example, it is obvious that, for a fixed amount of injected gas, the 
breakthrough cluster always has finite dimensions, while the effect of the occurrence of an infinite cluster 
is a key factor in percolation models. 

A breakthrough cluster can be treated as a configuration of a set of ruptured elements of a certain 
structural system (here, a system of lamellae), which is acted upon by a specified load (the injection of 
a specified amount of gas) subject to the condition that the law for the redistribution of the loads on 
the working elements of the system is known (relation (1.1)). Hence, the problem of determining the 
probability of the breakthrough of a form at a specified depth can be treated using the methods of 
probability mechanics for the breakdown of discrete systems or the structural theory of reliability (for 
example, see [9, lOIt>. 

We shall understand a system of lamellae of order N to be a set of lamellae which are a distance of 
no more than N “steps” from the reference lattice node. We call the set of lattice nodes which are a 
distance of exactly k steps from the reference lattice node the kth structural level of this system (in 
regular lattices, such a set of lattice nodes is called the kth coordination group [7]). It follows that the 
“carrying capacity” (or strength) of a system of lamellae is understood to be their resistance to the process 
of enlargement of the breakthrough zone. We shall say that a system of lamellae of order N is broken 
down under a “load” W if at least one of the lattice nodes of the Nth structural level falls within the 
breakthrough zone. In this case, we shall also say that the breakthrough depth is no less than N. 

A numerical characteristic of the strength of a system of lamellae RN can be introduced which, as 
follows from what has been said above, is equal to the minimum value of the quantity W for which the 
breakthrough reaches a depth N. By virtue of the probability formulation of the problem, RN is a random 
quantity and possesses a certain distribution function F&). According to the definition of the distribution 
function 

FR(JV) = Pr{RN c W} 

where the probability of an event, which consists of the fact that the strength of the system of lamellae 
is less than the applied load W, is written on the right-hand side (we recall that the quantity W is 
proportional to the amount of gas injected). 

Thus, in order to characterize the strength of a system of lamellae, it is necessary to find the distribution 
function F&) or, what is the same thing, to find the set of values PN(u/), that is, the breakthrough 
probabilities at a depth N for arbitrary values of W. 

Remark. The system which is analysed within the framework of the model described belongs to the so-called 
class of systems with unloading since the load on the unruptured lamellae is reduced as the failure process in the 
system develops. In such systems, the breakthrough probability can depend on a succession of breakdowns of the 
elements [lo]?. The version adopted here of the synchronous rupture of all of the lamellae which are overloaded 
in a given step is not the only possible one. However, an analytic investigation of other versions (successive rupture 
of lamellae in order of increasing values of their strength, for example) encounters significant difficulties. 

If a certain actual topology of the lattice (pore system) is now specified, the assumptions which have 
been made are sufficient to enable the breakthrough problem to be analysed using one or other numerical 
simulation scheme (see [2], for example). The use of Monte-Carlo methods [ll] makes a probability 
representation of the resulting parameters of the problem (the breakthrough depth or the volume of 
the breakthrough cluster) possible. However, it is only realistic to expect to obtain any analytic results 
when analysing a problem on regular lattices, as in percolation theory. 

tSee also ONISHCHENKO, D. A., Some principles of the construction and analysis of quasistatic models of the probability 

mechanics of the breakdown of discrete systems. Preprint No. 572, Inst. Problem Mekhaniki Ross. Akad. Nauk, Moscow, 1996. 
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In this paper, the breakthrough problem will be considered for several forms of a linear chain of lattice 
nodes and in the case when the structure of the system is a regular binary tree (a Cayley tree). Relation?, 
which determine the breakthrough probability to a specified depth, will be obtained analytically for these 
cases and certain features of the model will be clarified. It can be assumed that some of the properties 
of the breakthrough model, obtained for the lattices mentioned above, may be found to be similar to 
the case of other lattices by virtue of the empirical principle of universality which finds its confirmation 
in percolation theory [7,8]. 

2. SOLUTION OF THE PROBLEM IN THE CASE OF A LINEAR CHAIN 
OF LATTICE NODES 

We will consider the simplest, one-dimensional lattice with a linear configuration of the lattice nodes 
(Fig. 2). It is required to find the probability that, for a specified value of W, the breakthrough zone 
reaches a “depth” k = N. Such an event is equivalent to the product of the events involving the rupture 
of lamellae 1,2, . . . , N under the loads Apl, Ap2, . . . , ApN respectively, where, according to relation (1. l), 
Apk = pk -pa = [W/(kuo)lpo (k = 1, . . . , A”). Hence, by virtue of the independence of the strengths of 
the lamellae, the corresponding probability is equal to 

P,(W)=fi F, 
k=l 

(2.1) 

(here and henceforth we assume that p. = 1, u. = 1, unless otherwise stated). 
For small values of N, distribution (2.1) depends very much on the actual form of the function F,. 

We will show that, in the asymptotic limit when N + 00, the behaviour of the distribution PN( I+‘) possesses 
a certain universality. 

For convenience we will now change to a “specific load”: we shall characterize the amount of injected 
gas by means of the quantity c = W/N. Relation (2.1) is then written in the form 

F, 
k=l 

(2.2) 

It is clear that Piv(c) = 0 when c 6 C,in and PN(c) = 1 when c 2 c,,. We will therefore consider the 
behaviour of the quantity P,,(c) when c,in < c < c,,,. Suppose that cl = (c + c,,,)/2 and, at the same 
time, F(c,) c 1. If the depth N is sufficiently large, it can be asserted that (cN)/k -C cl when k > kl, 
where kl = yN (y = c/c, < 1). From relation (2.2), we now obtain 

Consequently, P,(c) -+ 0 when N -+ 03, that is 

P,+, + H(s,,,,,) when N + = (2.3) 

where His a step function. This means that the amount of injected gas, necessary for breakthrough up 
to a depth N, must be proportional to the breakthrough depth for large values of N 

W(N) - s,,,N (2.4) 

Moreover, this conclusion is independent of the actual form of the distribution F,. 

0 1 2 k k+l 

Fig. 2 
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A somewhat different problem, which is also of interest, can similarly be set up within the framework 
of this model, that is: to find the distribution of the breakthrough depth as a function of the amount 
of injected gas and its numerical characteristics (the mean value of the breakthrough depth, for example). 
Note that the breakthrough depth (which we denote by D(W)) is a discrete random quantity. 

In the case of a linear chain of lattice nodes, this problem can be solved analytically. We first find 
the breakthrough probability P;(W) exactly at a depth k (k = 0, 1,2, . . .) 

(2.5) 

(when k = 0, the first factor is assumed to be equal to one). This formula differs from formula (2.1) in 
that there is an additional factor which is equal to the probability that the lamella with the number 
k + 1 is not destroyed after the rupture of the first k lamellae. The set of quantities P#V) is the 
distribution series for the random quantity D(W), and the mean value of the breakthrough depth is 
therefore given by the sum 

(D(W)) = z k<(W) (2.6) 
k=O 

Similar formulae can be written for the variance and the higher moments. 
A rough estimate of the dependence of the quantity (O( IV)) on W can be obtained using the following 

arguments. Expression (2.5) vanishes both when k > W/S,in and when k s W/smax. Hence, the quantity 
D(W) only takes values in the interval [W/s,,, W/S,in] and this means that the estimate W/smax c (D(w)) 

c W/‘S,in holds. Note that it follows from relations (2.3) and (2.4) that (D(W)) --+ W/smax as Wincreases. 

3. CERTAIN FEATURES OF THE BREAKTHROUGH MODEL 

In order to reveal the distinguishing feature of the breakthrough model compared with models of the 
percolation type, we will consider a breakthrough problem in the three simple lattices shown in Fig. 3, 
where the lattice node 0 is the reference lattice node and all links are blocked in the initial state. We 
call the lattices which are denoted by the letters a, b and c in Fig. 3, lattices of type 1,2 and 3 respectively. 
The solution for lattice 1 has been obtained above and is given by formula (2.1). 

In order to find the breakthrough probability down to a depth N for lattice 2, we note that, unlike 
the case of lattice 1, it is now necessary to take account of the multiplicity of configurations of the system 
corresponding to the breakthrough event. In fact, the breakthrough zone, which reaches a depth N, 
can include an arbitrary number of “redundant” lattice notes l’, 3’, . . . . In the percolation formulation, 
the fact that the links O-l’, 2-3’, . . . corresponding to these lattice nodes are unblocked has no effect 
whatsoever on the required probability for the existence of a connecting route from the reference lattice 
node to a lattice node of the Nth structural level. In the breakthrough model, the unblocking of a link 
to a redundant lattice node (or to a dead end in percolation terms) leads to a reduction of the load on 
the lamellae, located on the breakthrough front, which results in a reduction of the breakdown probability 
for certain links compared with the case when the link leading to the redundant lattice nodes remain 
blocked. It follows from this that the breakthrough probability in lattice 2 is, generally speaking, less 
than the breakthrough probability in lattice 1 

Cc) 

__ 

1’ 3’ 
Fig. 3 
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P$J”( W) c Pp( W) (3.1) 

Note that, if a link leading to a redundant lattice node has not been destroyed in a given step, it will 
not be destroyed later on, and the corresponding lattice node does not therefore enter into the structure 
of the breakthrough cluster. 

We will now calculate the probability P$‘(W). We will denote by Hi,.,,iN the configuration of the 
breakthrough zone, when ii lamellae are ruptured in the first structural level, i2 are ruptured in 
the second structural level and so on, and, finally, iN are ruptured in the (Nth) structural level. Here, 
&_i(k = 1, 2, . . .) can take values of 1 or 2 (since there are two loaded lamellae) and ix = 1. When 
the breakthrough zone reaches the lattice node with number k, the load q on the active lamellae is equal 
to W/(1 + i, + . . . ik_,). Since the different configurations of the breakthrough cluster, which uniquely 
define the sets {ii, . . . , i,,,}, are mutually exclusive events and the strengths of the lamellae are independent 
random quantities, the probability of the breakthrough up to a depth N is found as the sum of the 
probability of the realization of all possible configurations (in accordance with the addition theorem 
for the probability of a sum of events [12]). When N is even, we obtain 

PA*‘(W)= i: [F,(q~)Ji'[1-F,t40)12-i'F,tq~,) 
il =I 

. . . i [F,(qi, +,_,+iN_* )liN-’ l1 - F,tqi,+,..+i#_* )J2-iN-’ F,(qil+...+iN_l ) 
iN-I 

(3.2) 

where the notation 

qj = WIti+ 1) (3.3) 

has been introduced. 
We will now explain that, when ii = 1, the first two factors in the first sum define the probability of 

the event involving the breaking of the O-l link and the non-breaking of the O-l’ link, and the third 
factor is equal to the probability of the breaking of the link l-2 under a load W/2. When ii = 2, the 
first two factors in the first sum define the probability of an event involving the simultaneous breaking 
of the links O-l and O-l’ while the third factor is equal to the probability of the breaking of link l-2 
under a correspondingly smaller load W/3. Similar arguments also hold for the remaining sums. 

It follows immediately from inequality (3.1) that, in the case of the normalization 

W=cN 

the asymptotic property (2.3) is also true in the case of lattice 2. If, however, another normalization of 
the amount of injected gas 

W=c(%N) 

is considered (for which the amount of injected gas is compared with the total volume of the “pore 
space” within the limits of N structural levels), then additional investigation is required. It can be proved 
that property (2.3) also holds in this case (the corresponding calculations are analogous to those 
presented in Section 2 but more lengthy). 

We will now consider lattice 3 (Fig. 3~). It can be obtained from lattice 2 by the addition of the links 
l’-2, 3’4 . . . . Apart from the further large increase in the number of possible configurations of the 
breakthrough cluster, this leads to the occurrence of the new of effect of the “retarded” unblocking of 
the lattice nodes. To explain this consider the unit (0, 1,2, 1’) in Fig. 3(c). We assume that the link O-l 
is broken in the first step and that the O-l’ link is not broken, thereby keeping the lattice node 1’ closed. 
For the subsequent development of the breakthrough process, the breaking of link l-2 is necessary, 
which leads to the loading of link 2-l’. In the case of its possible rupture, the lattice node 1’ is unblocked, 
it is added to the breakthrough cluster and thereby has an effect on the subsequent development of 
the breakthrough process. It is clear that, in the case of a more complex lattice topology, the “retardation 
time” can be, generally speaking, arbitrary which greatly complicates (if not completely precluding) the 
finding of an analytic solution. 
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In the version of the lattice being considered, a solution is nevertheless successfully found, to be sure, 
at the cost of introducing a single additional assumption. If it is assumed that, after initially breaking 
one of the links l-2 and l’-2, the second of them is broken (or not broken) and it is only then that the 
state of the links 2-3 and 2-3’ is analysed (naturally, a similar rule must also be applied in all of the 
remaining links), then it can be proved that the breakthrough probability in the case of even N is 
calculated using the formula 

@‘(W)= $ ~2f,(l-fo)fi(f*)i’-2(1-f2)3-” +(i, -2)[f~f2(2--*)lil-*)... 
ii =2 

. .iNit2h,_, (1 - A,_, UN_, +, (A,_, +2 IiN-’ -*u - A,_, +d3-;“- + 

+(i,_, -2)[~%_,~,_,+2(2-fiN_,+2)liN-'-*) (3.4) 

-t;k +I = F,(qi, +...+ik +l ), k=O (..., iv-l;f=0,1,2; i,=o 

The quantities q are calculated using relation (3.3); ii, is, . . , , iN_l are the variables of summation in 
(3.4). 

Relation (3.4) is much more complex than (3.2) and it is not possible here to carry out an asymptotic 
analysis using the same approach as above. The question as to which of the lattices, 2 or 3, is the 
“stronger” is also open. The answer possibly depends on the form of the distribution F,. 

4. ANALYTIC SOLUTION OF A BREAKTHROUGH PROBLEM 
ON A CAYLEY TREE 

We will now consider the problem of breakthrough on a Cayley tree (the corresponding lattice of nodes 
is sometimes called a Bethe lattice) with a branching factor of 2 (see Fig. 4, where the scheme for a 
tree of order N = 5 is shown). A special feature of a Cayley tree is the absence of closed paths in its 
structure. Moreover, if, in conformity with the breakthrough model being considered, the actual 
breakthrough front is defined as the set of lamellae which are loaded for the first time in a given step 
(we call such lamellae active lamellae), then it can only move away from the reference lattice node. 
This makes it much easier to determine the breakthrough depth. 

We define the event 2 as the formation of at least a single breached channel which reaches a depth 
N (that is, the formation of a chain of open pores consisting of at least N links) subject to the condition 
that the amount of injected gas is specified. As an example, the possible configuration accompanying 
the breakthrough of the system up to a depth of N = 5 is shown in Fig. 4, where the solid lines correspond 
to ruptured lamellae and the dashed lines correspond to unruptured lamellae. Correspondingly, the 
set of dark points constitutes the breakthrough cluster. 

In order to find the probability of the occurrence of the event 2, it is necessary to identify all the 
different versions of the configuration of the breakthrough zone leading to event Z. We denote by Hi,, i,.+ 
those versions when it lamellae are ruptured at the first structural level, i2 lamellae are ruptured at the 
second structural level, etc. and, finally, iN lamellae are ruptured at the Nth level. Here, the condition 

N=5 
Fig. 4 
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ik S 2ik_, (k = 1, . . . . N) must be satisfied since a single open pore at the k - 1 level cannot give more 
than two open pores of the following structural level. 

It can be calculated that there are C$C$, . . . C$N_, different configurations of the breakthrough zone 
in the case of a single set (i 1, . . . , iN). Realizations of actual configurations are mutually exclusive events. 
The inspection of all possible sets (iI, . , . , iN) and the application of the summation theorem leads to 
the following formula for the probability of breakthrough up to a depth of no less than N 

PN(W) = i c; [F,(qo>]“[I - F,(q())12-” 
2il 
C C~,[F,(qi,)Ji*[l-F,(qi,)]2i1-i2 

il =I i*=l 

2iN-1 

. . . C ccN_, [F,(qi, +.,.+iN_, >I’” [I - F,(qi, +...+iN_, )lZiN-’ -iN 

iN=I 

(4.1) 

Hereqi = W/(j + 1) (j = 0, 1, . . . . 2N) is the pressure drop on the lamellae located at the boundary of 
the breakthrough zone, subject to the condition that exactlyj = i, + i2 + 
up to this instant. The products [.]‘k[*]2ik-’ -lk 

. . . lamellae have been ruptured 
are equal to the probabilities that exactly ik of the 2i,_, 

loaded lamellae will be ruptured in the following step and that the remaining 2ik_, - ik lamellae will 
remain intact. 

Relation (4.1) is similar to relations (3.2) and (3.4) obtained in the case of a linear chain of pores. 
However, it has a combinatorial form: in this case, the number of terms (which is equal to the number 
of different versions of the configurations of the breakthrough zone) increases rapidly as N increases. 
It is analytically difficult to estimate this dependence effectively. Computer calculations, carried out 
for small values of N, show that the time taken to calculate the quantity P&V) increases on passing 
from N to N + 1 by approximately 2N times. The direct use of formula (4.1) for numerical calculations 
in the case of large values of N is therefore obviously impossible. 

There is considerable interest in the question of the behaviour of the corresponding distribution in 
the asymptotic limit, that is, as N -+ 00. As investigations of a related problem concerning the stochastic 
strength of a bundle of fibres with a hierarchical structure, which also has the form of a binary Cayley 
tree (see paper [lo] and the references therein), have shown, the limiting distributions can be of different 
types, including both degenerate step distributions, which correspond to the effect of the onset of a 
strength threshold (as shown above, such a situation occurs for linear lattices of types 1 and 2), and 
non-degenerate distributions. 

An asymptotic analysis of relation (4.1) is exceedingly complicated, not only within the framework 
of analytic approaches but, also, as has been noted above, numerical approaches. 

Examples of model calculations for N = 1, 3, 5, 7 are presented in Fig. 5. It is not the values of W, 
the amount of injected gas, themselves which have been plotted along the abscissa but the relative values 
c which are defined by the relation 

w = cWJ) (4.2) 

where f19 = 2N+1 is the total volume of the pore space within the limits of N structural levels (for 
convenience, it is assumed that the volume of the root node is equal to 2~“). The traditional Laplace 
equation [l, 21 for the pressure jump on a lamella 

Fig. 5 
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s - ylr, (4.3) 

is used to fix the strength distribution of the lamellae F,, where r, is the radius of the pore throat and 
y is the surface tension coefficient (a value of y = 0.03 Nm-’ was used in the calculations). The radius 
of the pore throat r, was taken as the basic, random variable in the calculations. This radius obeys a 
normal law with a density 

w,(x) = A-!-, exp (X-mM,)* 
2of 

which is truncated to the interval 10-6-10A m (the typical range of pore radii [l, 21). The values m, = 
5 x lo-’ and o, = lo-’ m were taken as the mean value of m, and the root mean square deviation o,. 

It follows from relation (4.3) that the strength of the lamellae is confined to the range 300-30000 
Pa with the mode (the maximum point of the density function) at the point 600 Pa. Note that the density 
function is asymmetric and shifted towards smaller values. Atmospheric pressurepo = lo5 Pa was taken 
as the initial pressure. 

Graphs of Z’,v against c, as has already been mentioned above, are actually the strength distribution 
functions of the fragment of the Cayley tree of order N. The graphs in Fig. 5 show that, as N increases, 
there is a tendency for the distributions to “drift” to the left, that is, there is a reduction in the strength 
of the system for a given value of c. We recall that the opposite situation occurred in the cases of the 
linear structures which were considered above and the distributions were displaced to the right (this is 
determined by property (2.3)). 

5. CONCLUSION 

The probability model of the breakthrough of a coarsely cellular foam when an ideal gas is injected 
into a porous medium differs fundamentally from models of the percolation type. The breakthrough 
cluster is always bounded and the problem consists of determining the probability of the breakthrough 
up to a depth no less than a specified depth. The analytical solutions, found in the case of a linear chain 
of pores and in the case when the structure of the system is a regular binary tree (a Cayley tree) have 
a very complicated form. It can therefore be assumed that approximate approaches are required for 
an effective analysis of the breakthrough model in lattices with a more complex structure. 

An asymptotic investigation, carried out for a linear chain of nodes, revealed the effect of the onset 
of a degenerate strength threshold. The limited numerical results, obtained for a Cayley tree, enable 
us to postulate that, in the case of other lattices, the asymptotic behaviour of the strength distributions 
of a system of blocking lamellae may turn out to be non-trivial and to depend very much on the method 
of normalising the amount of injected gas. 

The approaches suggested in this paper may find application when investigating models with a different 
physical content, in particular, when describing a certain process which propagates through a stochastic, 
tree-like structure from the root to a vertex with gradually decreasing intensity. Problems which arise 
in the study of breathing difficulties are examples (see [13], where an analysis of a certain mechanical 
model of forced ventilation of the lungs was carried out using the apparatus of percolation theory). 
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